Сколько надо люменов для растений

Сколько надо люменов для растений

После того, как важность использования искусственного освещения при выращивании растений была обоснована научно, производство специальных ламп для садоводов и фермеров было начато с широким размахом. В

Той статье будут обсуждаться различные типы освещения, широко применяемые в технологии выращивания растений и гидропонике. Тип освещения — один из основных факторов, влияющих на результат роста. Остальные — это уровень углекислого газа, вода, минеральные удобрения, экология и качество света. Приведенные ниже сведения будут полезны для создания и наладки своего освещения, используя стандартную классификацию типов электрического освещения.

В последнее время использование искусственного света становится все более и более экономически выгодным. Стоимость покупки и обслуживания ламп становится все ниже, а источники освещения все более мощными. Все это, вкупе с возможностью транспортировки представителей флоры, а также развитием рынка специальных гидропонных продуктов, делает возможным выращивание растений вообще без почвы.

Искусственное освещение может использоваться в садоводстве и фермерстве в трех случаях:

Для полного обеспечения получения света, в котором нуждается растение.

Для дополнения солнечного света, в котором нуждаются растения. Особенно актуально это в зимние месяцы — период сокращения часов светового дня.

Для увеличения продолжительности светового дня. Актуально для достижения специального эффекта роста или цветения.

Фотосинтетически активная радиация, кривая восприятия растений

Подобно тому как люди нуждаются в сбалансированной диете, растения также ощущают потребность в сбалансированном полноспектральном освещении. Качество света не менее важно, чем количество. Растения восприимчивы к свету примерно в том же диапазоне, что и человеческий глаз. Эта порция светового спектра соотносится с фотосинтетически активной радиацией (ФАР) в спектральном диапазоне 400-700 нм. Тем не менее, восприятие растений внутри этого участка отлично от аналогичного у человека.

Человек имеет пиковое восприятие желто-зеленой части спектра (около 550 нм). Эта «оптическая желтизна» используется для восприятия отлично видимых явлений и объектов. Растения же значительно более эффективно воспринимают красный и синий цвета, причем пик находится в районе 630 нм. Графики ниже демонстрируют кривые восприятия растений и людей. Обратите внимание на различия линий.

Равнозначно тому как для человека наилучшим источником калорий является жир, для растений лучшая пища — это красный свет. Однако, растения освещаемые исключительно красным и оранжевым светом большей частью не вырастут должным образом. Причина этого в том, что для полноценного роста листвы (особенно важно для овощей) и массы крайне важен синий свет. Многие другие комплексные процессы зависят и от других спектральных диапазонов. Определение правильной спектрально порции света зависит от вида растения. Принятие решения о количестве необходимого света также должно учитывать части спектра уже задействованные при освещении. При подборе освещения для растений не могут применяться те же стандарты, что и при выборе источника света для людей. Некоторые принципы соответствия и различий могут быть использованы для определения необходимой меры света в гидропонике.

Видео о замерах солнечного света на подоконнике осенью.

Измерение уровня освещения для людей. Люмен (лм) и Люкс (лк)

Как мы оцениваем количество света, необходимое людям ? Очевидный способ — определение того, насколько ярким является источник света и насколько «хорошо» глаза видят при нем. Поскольку человеческий глаз наиболее чувствителен к восприятию «желтого» участка спектра, наибольшее внимание уделяется именно ему, в то время, как синий и красный цвета несколько «обделены». Это все является основой для измерения общего количества единицей измерения, называемой люменом.

Свет, взятый из источника, распространяется по всему помещению для создания освещаемого пространства. Уровень освещения определяется единицей измерения «люкс», которая показывает как много люменов приходится на один квадратный метр пространства. Освещение в 1000 лк означает, что 1000 лм приходится на каждый квадратный метр площади.

Аналогично «люмен на квадратный фут (лм/фут²)» — единица измерения, которая показывает количество люменов на один квадратный фут.

Как бы то ни было, и люмен, и люкс отображает исключительно человеческое восприятие светового спектра, потому как растения воспринимают все совершенно иначе.

Каким же образом следует измерять уровень света для растений ? Есть 2 основных способа для определения этой величины: измерение уровня энергии или подсчет количества фотонов.

Уровень Ватт фотосинтетически активной радиации.

Ватт — объективная мера для измерения количества энергии, выделяемой лампой ежесекундно.

Энергия в свободном состоянии измеряется в Джоулях, и один Джоуль в секунду называется Ватт.

Лампа накаливания мощностью 100 Вт генерирует 100 Дж энергии каждую секунду. Однако, как много световой энергии производится при этом ?
Около 6 Дж в секунду = 6 Вт.
Мы видим, что мощность составляет всего лишь 6 %. Большинство же оставшейся энергии выделяется в тепловой форме.

Многие газозарядные лампы, например, натриевые газозарядные лампы или металлогалогенные лампы значительно более эффективны по сравнению с лампами накаливания, потому как, соответственно, 30 и 40 % выделяемой энергии преобразуют в свет.

Поскольку растения используют энергию в диапазоне 400 — 700 нм, то свет на этом спектральном участке называется фотосинтетически активной радиацией или просто ФАР. Для измерения энергии, выделяемой в этом диапазоне в секунду используется величина Вт ФАР. Это объективная мера для растений в противоположность субъективной мере, измеряемой в люменах, для определения влияния на восприятие человека. Ватт ФАР прямо указывает на количество энергии, которую растения могут использовать в реакции фотосинтеза.

Исходящие 400 Вт лампы накаливания равнозначны 25 Вт света, а из 400 Вт энергии, излучаемой металлогалогенной лампой, около 140 Вт приходятся на свет. Если принять во внимание тот факт, что на ФАР приходится основная "видимая" часть спектра, то логичным заключением будет то, что металлогалогенная лампа производит 140 Вт ФАР. Газозарядные лампы имеют несколько меньший показатель: 120-128 Вт, потому что свет желтый и содержит большее количество люменов.
"Освещенность" измеряется в Вт ФАР на метр квадратный, однако это не совсем верное понятие для определения эффективности света при выращивании растений, поэтому в садоводстве чаще используется термин "облученность", измеряемая в Вт/м2 или Ватт на метр квадратный.

Следующий важный принцип, который следует понять для того, чтобы определить точное количество света, необходимое растениям — это осознание того, что свет распространяется не чем-то цельным, но пучками, именуемыми "фотонами". Эти пучки являются минимальными носителями энергии, путем которой свет и передается. Поскольку реакция фотосинтеза протекает путем поглощения атома фотона, то целесообразно будет подсчитать их количество, которое ежесекундно принимает на себя растение.

Поскольку только фотоны света ФАР участка спектра являются активатором реакции фотосинтеза, то имеет смысл измерить только их количество. Теоретически лампы могли бы быть настроены на количество фотонов, излучаемых ежесекундно, но на сегодняшний день такие лампы не производятся.

Биологи-исследователи говорят о фотонном потоке, которым облучается поверхность, — важной части исследуемого вопроса, обозначаемой ФФП ФАР (Photosynthetic Photon Flux, PPF), где ФФП не что иное, как фотосинтетический фотонный поток—величина, показывающее количество фотонов приземляющееся ежесекундно на 1 квадратный метр облучаемой поверхности.

Друга важная величина — конверсия фотонного потока (YPF PAR or Yield Photon Flux). Этот показатель явственно демонстрирует нам насколько эффективно растение использует полученный фотонный "капитал". Поскольку "красные" цвета более активно способствуют запуску фотосинтеза, данные измерения уделяют внимание прежде всего подсчету именно их.

Поскольку фотоны крайне малы по своим габаритам, то в науке, вместо чисел вида 1 000 000 000 000 000 000, используется обозначение "1.7 микромоль фотонов" ( знак µмоль). Микромоль содержит в себе 6 x 1017 фотонов, а 1 моль 6 x 1023 фотонов.

Освещенность (или "облученность") измеряется количеством Ватт на квадратный метр или количеством микромоль на квадратный метр.

Читайте также:  Сколько весит пила урал

Несмотря на то, что все три величины (Ватт на метр квадратный, фотосинтетический фотонный поток, конверсия фотонного потока) позволяют измерить количество света, которое получают растения, человеческий глаз не способен воспринять кривую спектра ФАР — 400-700 нм. Следует заметить, что некоторые ученые предлагают иные показатели: 350-750 нм. но принципиальной разницы для садоводов любителей в этом нет.

Фотосинтез и фотоморфогенез

Растения получающие недостаточно света, производят слабые, вытянутые листья и страдают общим недостатком массы. Другие же растения, наоборот, получающие чрезмерное количество света, выглядят исушенно-безжизненно и имеют обесцвеченную листву из-за разрушения хлорофилла.

Также растения могут быть повреждены избыточной ультрафиолетовой радиацией

Однако, внутри допустимой нормы растения прекрасно откликаются на нужную дозировку света, показывая хорошие результаты в росте и наборе массы. А относительная квантовая эффективность является той мерой, которая демонстрирует максимальную работу каждого фотона.
Кривая зависимости относительной квантовой эффективности от длины волны называется кривой реакции растений к фотосинтезу, о чем было сказано ранее.

Также предоставляется возможным построить график, демонстрирующий эффективность определенных участков спектра на осуществление реакции фотосинтеза. Факт того, что фотоны синего света производят больше энергии, чем фотоны красного цвета обязательно должен быть принят во внимание, и тогда кривая может быть запрограммирована на измерение исключительно "люменов растений" или "люменов человека". Это и должно произойти в обозримом будущем. Например, уже сегодня компания Venture Lighting International предлагают установленные Вт ФАР счетчики на серии ламп Sunmaster, предназначенных специально для рынка растениеводческих технологий.

Главной составной частью растений, обеспечивающей фотосинтез является хлорофилл. Некоторые ученые извлекали его из растений для определения реакции на световое излучение различной длины волн и спектральной частотности, ожидая, что его реакция будет аналогичной реакции фотосинтеза растений. Однако, исследования показали, что реакция других компонентов (в частности, каротиноидов и фикобилинов) не менее важна для протекания нормальной реакции фотосинтеза. Таким образом, кривая отклика растений представляет собой собирательную величину, состоящую из значений реакций всех необходимых пигментов, и характерную для большинства растений (хоть и не для всех, т.к. разница, порой, достигает 25 %). Хотя в газозарядных лампах и лампах накаливания спектральная величина излучаемого света остается неизменной, металлогаллогенные лампы предоставляют возможность выбора температуры и спектрального диапазона освещения.

В дополнение к фотосинтезу, который имеет следствием материальный рост, другие функции (прорастание, цветение и пр) вызваны наличием или отсутствием света. Эти процессы называются фотоморфогенезом и зависят не столько от интенсивности света, сколько от облучения в строго классифицированных спектральных рамках (синий, дальний красный или просто красный), а также от действия специальных рецепторов (фитохромы и криптохромы).

Растения "видят" свет иначе, чем люди. Именно поэтому люмены, люксы и футсвечи не всегда являются величинами, показывающими достаточный уровень освещенности, так как это меры, прежде всего всего отображающие уровень видимости. В случае с растениями лучше использовать значения Вт ФАР, фотосинтетического фотонного потока и конверсию фотонного потока.
Кроме того, важным является не только количество, но и качество света.

Проектируем простой осветительный макет.

Шаг 1. Определяем уровень освещенности в Вт ФАР/метр квадратный.

Какой уровень освещения максимально хорошо подходит растениям ?
Это зависит от типа растений, стадии роста, уровня освещенности помещения и других факторов. рекомендации, размещенные в технических брошюрах следует рассматривать как важный источник информации. В общем и целом, растения однозначно растут быстрее при более качественном уровне света, но это вызывает дополнительные расходы на электроэнергию.

Так как лампы отличаются друг от друга, то и соответственно отличаются настройки, применяемые к ним, поэтому точный расчет настроек обязателен для каждого отдельного устройства.

Например, специальная техническая брошюра рекомендует Вам ППФ ФАР в размере 400 µмоль на метр квадратный. Таблица ниже рекомендует Вам 85 Вт ФАР на метр квадратный. Коэффиценты конверсии между ППФ ФАР, Вт ФАР зависят от источника света. Например, 400 Вт лампа накаливания излучает больше люменов, чем 400 Вт металлогалогенная лампа, но меньше Вт ФАР. Также значение имеет цветовая температура. Таблица ниже поможет Вам в настройках металлогалогенных ламп.

Типичный уровень света

Вт ФАР на метр квадратный

Микромоль на метр квадратный

Люкс (количество люменов на метр квадратный)

Освещение растений. Часть 4: Выбор системы освещения

В этой части мы рассказываем о расчете мощности ламп, практическом измерении освещенности и т.д.

В предыдущих частях мы говорили об основных понятиях и о различных типах ламп, используемых для освещения растений. В этой части рассказывается о том, какую систему освещения выбрать, сколько потребуется ламп для освещения того или иного растения, как померить освещенность в домашних условиях и для чего нужны рефлекторы в осветительных системах.

Свет — один из самых важных факторов успешного содержания растения. Путем фотосинтеза растения "изготавливают еду" для себя. Мало света — растение ослаблено и либо умирает от "голода", либо становится легкой добычей вредителей и болезней.

Быть или не быть

Итак, вы решили установить новую систему освещения для ваших растений. Прежде всего ответьте на два вопроса.

  • Чем ограничен ваш бюджет? Если на всю осветительную систему выделена небольшая сумма денег, которую вы оторвали от стипендии и вам необходимо уложиться в нее, то эта статья вам не поможет. Единственный совет — купите то, что сможете. Не тратьте силы и время на поиски. К сожалению, система освещения для растений или для аквариума — дело недешевое. Иногда, более разумной альтернативой является замена светолюбивых растений на теневыносливые — лучше иметь ухоженный спатифиллум, который не требует много света, чем сокрушаться из-за полудохлой гардении, которой катастрофически его не хватает.
  • Вы собираетесь просто перекантоваться до весны, по принципу "не до жиру, быть бы живу"? Тогда просто купите самую простую люминесцентную лампу. Если же вы хотите, чтобы ваши растения полноценно росли и даже цвели под лампами, тогда нужно потратить силы и средства на осветительную систему. Особенно, если вы выращиваете растения, которые круглый год растут в условиях искусственного освещения, например, аквариумные.

Если вы определились с ответами на эти вопросы и решили установить полноценную систему освещения, то тогда читайте дальше.

Что такое хорошее освещение

Три главных фактора определяют — хорошая ли система освещения или плохая:

  • Интенсивность света. Света должно быть достаточно для растений. Слабый свет нельзя заменить длинным световым днем. Много света в комнатных условиях не бывает. Достичь освещенности, которая бывает ярким солнечным днем (более 100 тыс. Лк) достаточно сложно.
  • Длительность освещения. Различные растения требуют различный световой день. Многие процессы, например, цветение, определяются длительностью светового дня (фотопериодизм). Все видели красную пуансеттию (Euphorbia pulcherrima), продающуюся на Рождество и Новый год. Этот куст растет под окном нашего дома на юге Флориды и каждый год зимой, без ухищрений с нашей стороны, "делает все сам" — у нас есть то, что необходимо для образования красных прицветников — длинные темные ночи и яркие солнечные дни.
  • Качество освещения. В предыдущих статьях я затрагивал этот вопрос, говоря о том, что растению необходим свет как в красной, так и синей области спектра. Как уже было сказано, необязательно применять специальные фитолампы — если вы используете современные лампы с широким спектром, например, компактные люминесцентные или металлогалоидные, то спектр у вас будет "правильным".

Помимо этих факторов, безусловно, важны и другие. Интенсивность фотосинтеза ограничивается тем, чего не хватает в данный момент. При низкой освещенности — это свет, когда света много, то, например, температура или концентрация углекислого газа и т.д. При выращивании аквариумных растений часто случается, что при сильном освещении, концентрация углекислого газа в воде становится ограничивающим фактором и более сильный свет не приводит к увеличению темпов фотосинтеза.

Читайте также:  Салат из копченого окорока

Сколько растениям нужно света

Растения можно разделить на несколько групп по требованиям к свету. Цифры для каждой из групп достаточно приближенные, поскольку многие растения могут себя хорошо чувствовать как на ярком свету, так и в тени, адаптируясь к уровню освещенности. Для одного и того же растения необходимо разное количество света в зависимости от того развивается ли оно вегетативно, цветет или плодоносит. С энергетической точки зрения, цветение — процесс, который расходует "впустую" большое количество энергии. Растению надо вырастить цветок и снабжать его энергией, при том, что сам цветок не вырабатывает энергии. А плодоношение еще более расточительный процесс. Чем больше света, тем больше энергии "от лампочки" растение сможет запасти для цветения, тем более красивым будет ваш гибискус, тем больше цветов будет на кусте жасмина.

Ниже приведены некоторые растения, предпочитающие те или иные световые условия. Уровень освещенности выражен в люксах. Про люмены и люксы уже было сказано во второй части. Здесь я повторю только, что люксы характеризуют насколько "светло" растениям, а люмены — характеризуют лампы, которыми вы освещаете эти растения.

  • Яркий свет. К этим растениям относятся те, которые в природе растут на открытом месте — большинство деревьев, пальм, суккуленты, бугенвиллия, гардения, гибискус, иксора, жасмин, плюмерия, тунбергия, кротоны, розы. Эти растения предпочитают высокий уровень освещения — не менее 15-20 тыс. люкс, а некоторые растения для успешного цветения требуют 50 и более тыс. Лк. Большинство пестролистных растений требуют высокой освещенности, иначе листья могут "вернуться" к однотонной окраске.
  • Умеренный свет. К этим растениям относятся растения "подлеска" — бромелиевые, бегонии, фикус, филодендрон, каладиум, хлорофитум, бругманзия, брунфельсия, клеродендрум, кроссандра, мединилла, пандорея, рутия, барлерия, тибухина. Желаемый уровень освещенности для них составляет 10-20 тыс. Лк.
  • Слабый свет. Понятие "тенелюбивые растения" не совсем верно. Все растения любят свет, включая стоящую в самом темном углу драцену. Просто некоторые растения могут расти (скорее существовать) при слабом освещении. Если вы не гонитесь за скоростью роста, то они будут себя хорошо чувствовать и при слабом освещении. В основном, это растения нижнего яруса — хамедорея, вайтфельдия, антуриум, дифенбахия, филодендрон, спатифиллум, эхинантус. Им достаточно от 5 до 10 тыс. люкс.

Приведенные уровни освещенности достаточно приблизительные и могут служить отправной точкой для выбора системы освещения. Еще раз подчеркну, что цифры эти для полноценного роста и цветения растения, а не для "зимовки", когда можно обойтись меньшим уровнем освещенности.

Большинство современных цифровых
камер выводят значения апертуры и
выдержки, упрощая процесс
измерения освещенности

Итак, теперь вы знаете, сколько света необходимо вашему растению и хотите проверить, получает ли оно все, что ему полагается. Все теоретические выкладки хороши, однако лучше померить реальную освещенность там, где стоят растения. Если у вас есть люксметр, то вам повезло (на фото слева).

Если люксметра нет, то не отчаивайтесь. Экспонометр фотоаппарата — тот же люксметр, только вместо освещенности выдающий значения выдержки, т.е. времени, на которое нужно открыть затвор камеры. Чем меньше освещенность, тем больше время. Все просто.

Если у вас есть внешний экспонометр, то положите его в то место, где вы измеряете освещенность, так чтобы светочувствительный элемент был перпендикулярен направлению падающего на поверхность света.

Если вы используете камеру, то положите лист белой матовой бумаги перпендикулярно направлению падающего света (не надо использовать глянцевую — она даст неверные результаты). Выберите размер кадра так, чтобы лист занимал весь кадр. Фокусироваться на него необязательно. Выберите чувствительность пленки — 100 единиц (современные цифровые камеры позволяют "имитировать" чувствительность пленки).

По значениям выдержки и апертуры определите освещенность в таблице. Если установить значение чувствительности пленки в 200 единиц, то табличные значения необходимо уменьшить вдвое, если установлено значение 50 единиц, то значения увеличиваются в два раза. Переход к следующему, более высокому, диафрагменному числу также увеличивает значения в два раза. Таким способом можно примерно оценить уровень освещенности там, где стоят ваши растения.

Использование рефлектора позволяет
увеличить полезный световой поток
в несколько раз

Если вы используете люминесцентную лампу без рефлектора, то вы уменьшаете полезный свет в несколько раз. Как несложно понять, только тот свет, который направлен вниз, попадает на растения. Тот свет, который направлен вверх — бесполезен. Тот свет, который слепит вам глаза, когда вы смотрите на открытую лампу, также бесполезен. Хороший рефлектор напра- вляет свет, слепящий глаза, вниз на растения. Результаты моделирования люминесцентной лампы показывают, что освещенность в центре, при использовании рефлектора возрастает почти в три раза, а световое пятно на поверхности становится более концентрированным — светильник освещает растения, а не все вокруг.

Большинство светильников, продаваемых в магазинах бытовой техники не имеет рефлектора или имеет то, что рефлектором назвать стыдно. Специальные системы для освещения растений или аквариума с рефлекторами стоят очень дорого. С другой стороны, сделать самодельный рефлектор несложно.

Как сделать самодельный рефлектор для люминесцентной лампы

Форма рефлектора, особенно для одной-двух ламп, не имеет принципиального значения — любая "хорошая" форма, у которой число отражений не более одного и возврат света в лампу минимален, будет иметь примерно одинаковую эффективность в пределах 10-15%. На рисунке показан поперечный разрез рефлектора. Видно, что его высота должна быть такой, чтобы все лучи выше граничного (луч 1 на рисунке), перехватывались рефлектором — в таком случае светильник не будет слепить глаза.

Задавшись направлением отраженного граничного луча (например, вниз или под углом), можно построить перпендикуляр к поверхности рефлектора в точке отражения (точка 1 на рисунке), который делит угол между падающим и отраженным лучом пополам — закон отражения. Таким же образом определяется перпендикуляр и в остальных точках (точка 2 на рисунке).

Для проверки рекомендуется взять еще несколько точек, чтобы не получилась ситуация, изображенная в точке 3, где отраженный луч не идет вниз. После этого можно либо сделать многоугольный каркас, либо построить плавную кривую и по шаблону выгнуть рефлектор. Не следует размещать верхнюю точку рефлектора близко к лампе, поскольку лучи будут попадать обратно в лампу. При этом лампа будет греться.

Рефлектор можно сделать либо из алюминиевой фольги, например, пищевой, которая обладает достаточно высоким отражением. Также можно покрасить поверхность рефлектора белой краской. При этом его эффективность будет практически такой же, как и для "зеркального" рефлектора. Обязательно проделайте отверстия сверху рефлектора для вентиляции.

Длительность и качество освещения

Длительность освещения обычно составляет 12-16 часов, в зависимости от вида растений. Более точные данные, а также рекомендации по фотопериодизму (например, о том, как заставить цвести упомянутую выше пуансеттию) можно найти в специальной литературе. Для большинства растений приведенной выше цифры вполне достаточно.

Про качество освещения уже говорилось не раз. Одной из иллюстраций может служить фотография растений, выращенных при освещении ртутной лампой (снимок из старой книги, в то время других ламп практически не было) и лампой накаливания. Если вам не нужны длинные и тощие растения, то не используйте лампы накаливания или натриевые лампы без дополнительной подсветки люминесцентными или газоразрядными лампами с излучением в синей области спектра.

Читайте также:  Хризантема микс в открытом грунте

На фото слева : томаты, выращенные под светом различных ламп. 1 — ртутная лампа без фильтров, 2, 3 — ртутная лампа с фильтрами, удаляющими различные части спектра. 4 — лампа накаливания.
Из книги Bickford/Dunn “Lighting for Plant Growth” (1972) Помимо всего прочего, лампы для растений должны подсвечивать растения так, чтобы на них было приятно смотреть. Натриевая лампа в этом смысле не самая лучшая лампа для растений — на фото справа показано, как растения выглядят под такой лампой в сравнении с освещением металлогалоидной лампой.

Расчет мощности ламп

Итак мы подошли к самому главному — сколько взять ламп для освещения растений. Рассмотрим две схемы освещения: люминесцентными лампами и газоразрядным светильником.

Количество люминесцентных ламп можно определить, зная средний уровень освещенности на поверхности. Необходимо найти световой поток в люменах (умножив освещенность в люксах на площадь поверхности в метрах). Потери света составляют примерно 30% для лампы, висящей на высоте 30 см от растений, и 50% для ламп на расстоянии 60 см от растений. Это верно, если вы используете рефлектор. Без него потери возрастают в несколько раз. Определив световой поток ламп, можно найти их суммарную мощность, зная, что люминесцентные лампы дают примерно 65 Лм на Вт мощности.

Для примера оценим, сколько ламп потребуется для освещения для полки размером 0.5×1 метр. Площадь освещаемой поверхности: 0.5×1=0.5 кв.м. Допустим, что нам необходимо осветить растения, предпочитающие умеренный свет (15000 Лк). Осветить всю поверхность с такой освещенностью будет сложно, поэтому мы сделаем оценку, исходя из средней освещенности 0.7×15000 =11000 Лк, поставив растения, требующие больше света, под лампу, где освещенность выше средней.

Итого, необходимо 0.5х11000=5500 Лм. Лампы на высоте 30 см должна давать примерно в полтора раза больше света (потери составляют 30%), т.е. около 8250 Лм. Суммарная мощность ламп должна быть около 8250/65=125 Вт, т.е. две компактные люминесцентные лампы по 55 Вт с рефлектором обеспечат нужное количество света. Если вы хотите поставить обычные трубки по 40 Вт, то их потребуется три штуки или даже четыре, поскольку трубки, размещен- ные близко друг к другу, начинают взаимно экранировать, и эффектив- ность осветительной системы падает. Старайтесь использовать современные компактные люминесцентные лампы вместо обычных, по большей части устаревших, трубок. Если не использовать рефлектор, то в данной схеме придется брать в три или четыре раза больше ламп.

Расчет количества люминесцентных ламп

Необходимый световой поток на поверхности: L=0.7 x A x B
(длина и ширина в метрах)

Необходимый световой поток ламп с учетом потерь (при наличии рефлектора): Lamp=L x C (C=1.5 для лампы на высоте 30 см и C=2 для лампы на высоте 60 см)

Для газоразрядных ламп расчет аналогичен. Специальный светильник с натриевой лампой мощностью 250 Вт обеспечивает средний уровень освещенности 15 тыс. Лк на площадке размером 1 кв.м.

Если известны светотехнические параметры светильника, то рассчитать освещенность совсем просто. Например, из фигуры слева видно, что светильник (OSRAM Floraset, 80W) освещает круг диаметром около метра на расстоянии чуть менее полуметра от лампы. Максимальное значение освещенности 4600 Лк. Освещенность к краю спадает достаточно быстро, поэтому такой светильник может быть использован лишь для растений, которым нужно не очень много света.

На фигуре слева показана кривая силы света (тот же светильник, что и выше). Чтобы найти освещенность на расстоянии от светильника, необходимо значение силы света поделить на квадрат расстояния. Например, на расстоянии полметра под лампой значение освещенности будет равно 750/(0.5×0.5)=3000 Лк.

Очень важный момент — лампы не должны перегреваться. При повышении температуры их светоотдача резко падает. В рефлекторе должны быть отверстия для охлаждения. Если используется много люминесцентные ламп, то следует использовать вентилятор для охлаждения, например компьютерный. Мощные газоразрядные светильники обычно имеют встроенный вентилятор.

В этом цикле статей были рассмотрены различные вопросы освещения растений. Многие вопросы остались незатронутыми, например, выбор оптимальной электрической схемы включения ламп, что является важным моментом. Тем, кто интересуется этим вопросом, лучше обратится к литературе или специалистам.

Наиболее рациональная схема проектирования системы освещения начинается с определения необходимого уровня освещенности. Затем следует оценить количество ламп и их тип. И только после этого спешить в магазин, чтобы купить лампы.

При выращивании растений в домашних условиях, очень часто необходимо дополнительное освещение. Это связано с тем, что не все растения вы сможете расположить на окне, некоторые придется ставить в комнате, где света гораздо меньше. И даже если у вас много места на подоконниках и вам удалось расположить все ваши растения на подоконниках, то некоторым растениям зимой может не хватать светового дня, их придется досвечивать с помощью дополнительных источников света. В данной статье мы разберемся, как же рассчитать количество источников света, зная их технические характеристики и площадь, которую необходимо освещать.

Итак, приступим. Для начала необходимо вычислить некоторые необходимые параметры. Все на самом деле очень просто и доступно. Нужно только научиться отличать люксы от люменов и знать что они значат. Это просто, сейчас разберемся.

Люкс (лк) — это единица измерения освещенности. Показывает насколько светло вашим растениям, которые занимают определенную площадь. 1 лк это такое количество света, которое необходимо для равномерного освещения площади в 1 кв. м световым потоком в 1 лм.

Люмен (лм) — единица измерения светового потока. Не будем давать точное определение люмена, дабы забивать голову ненужной сейчас информацией. Для расчета нам достаточно знать только то, что обычно указано на упаковках, т.е. сколько люменов лампа, которую мы планируем использовать.

Теперь рассчитаем сколько же люменов нужно, чтобы ваши растения получили освещенность в необходимые 8000 лк, которые требуются для комфортного роста растениям или даже немного выше, именно на вашем конкретном подоконнике.

  1. Сначала рассчитаем площадь, которую у Вас занимает рассада: Например, это подоконник шириной 0.5 м и длиной 1.8 м. Тогда площадь S=1.8*0.5 = 0.9 м2
  2. Теперь рассчитаем световой поток в люменах, который нужно создать, чтобы равномерно осветить всю площадь рассады. Для этого просто умножим площадь освещаемой поверхности на необходимую растениям освещенность:
    8000 лк * 0.9 м2 = 7200 Лм — это минимум нам необходимый, чтобы хорошо осветить наш подоконник.
  3. Нужно еще учесть потери на расстояние от источника света, например при подвешивании лампы на высоту около 30см они составят около 30%, значит, чтобы освещенность осталась неизменной, световой поток должен быть примерно в на 30% мощнее, т.е. в 1.5 раза больше 7200 * 1.5 = 10 800 лм.

Таким образом мы с вами рассчитали минимальный световой поток, который в теории должны создавать лампы, которые предназначены для досвечивания рассады в данном конкретном случае, при условиях площади подоконника 0,9 кв. м и необходимом минимальном световом потоке 8000 лм, а так же с учетом удаленности ламп от растений на 30 см!

Световой поток ламп указан на их упаковке и теперь исходя из этого вам легко будет рассчитать количество необходимых для досветки лампочек.

Количество необходимых лампочек = Необходимая нам мощность светового потока (10800 лм) / мощность светового потока 1 лампочки (указана на упаковке 3350 лм) = 10800/3350 = 3.2 лампочки минимум потребуется. Округляем в большую сторону и получаем ответ 4 лампочки

Ссылка на основную публикацию
Adblock detector